自己焼結法による高コネクティビティ ex-situ 法 MgB₂ バルクの開発 Development of ex-situ MgB₂ bulks with high connectivity by self-sintering method

<u>水谷 俊介</u> (東大院工);山本 明保 (東大院工・JST さきがけ);下山 淳一,荻野 拓,岸尾 光二 (東大院工) <u>MIZUTANI Shunsuke</u> (The University of Tokyo); YAMAMOTO Akiyasu (The University of Tokyo, JST-PRESTO); SHIMOYAMA Jun-ichi, OGINO Hiraku, KISHIO Kohji (The University of Tokyo) E-mail: 6122075513@mail.ecc.u-tokyo.ac.jp

1. はじめに

MgB₂は金属系超伝導体の中で最高の T_c(~40 K)を持ち、 液体へリウムフリーの冷凍機冷却による15-30 K における応用 が期待されている。MgB₂ 多結晶材料の一般的な作製方法で ある ex-situ 法は、高密度で均一な組織を比較的容易に得ら れるが、粒間結合が弱く、高密度に反してコネクティビティが 低いという問題があった。そのため、さらなる高 J_c 化に向けて は粒間結合の強化によるコネクティビティの向上が不可欠で ある。

我々は ex-situ 法において高温長時間の熱処理により MgB₂の自己焼結が生じ、粒間結合性が著しく改善することを 報告してきた[1,2]。しかし、MgB₂ は融点が 2000°C 以上と非 常に高い一方で、焼結に適した高温において高い Mg 平衡 蒸気圧を示すため、Mg が飛散して MgB₄ へ分解するという問 題があった。したがって本研究では、900°C 程度の比較的低 温における自己焼結反応を活性化させることで、高コネクテ ィビティ ex-situ 法 MgB₂ 多結晶体を開発することを目的とし、 自製の高純度 MgB₂ 原料粉末を用いて不純物の極めて少な い ex-situ 法 MgB₂ バルクを合成した。試料の微細組織、コネ クティビティと超伝導特性について、in-situ 法、従来の ex-situ 法で作製したバルク試料との比較検討を行った。

2. 実験方法

自製 MgB₂ 原料粉末は、酸素濃度 0.1 ppm 以下の不活性 雰囲気グローブボックス中で、MgとBを1:2 のモル比で混合 した粉末を SUS316 管に充填し、一軸プレスによって両端を 封じ、Ar 気流中で 900°C, 2 h の熱処理を行うことにより得た。

作製した MgB₂ 原料粉末をグローブボックス中で粉砕し、 SUS316 管に充填した後、両端を一軸プレスによって封じ、テ ープ状に成型した。これを熱処理温度は 900°C に固定し、熱 処理時間は 24-96 h に変化させて熱処理を行い、*ex-situ* 法 MgB₂ バルクを得た。得られた試料に対し、粉末 X 線回折 (XRD)により構成相を、SQUID 磁束計を用いた磁化率測定 により超伝導特性を、交流四端子法による抵抗率測定からコ ネクティビティを評価し、FESEM により微細組織観察を行っ た。

3. 結果と考察

原料粉末として*in-situ*法により作製したMgB2粉末のXRD パターンからは、不純物である MgO をほとんど含まない、高 純度な MgB2が得られたことがわかった。

自製 MgB₂粉末を用いて900°Cにおいて熱処理時間の異なる MgB₂バルクを作製した。得られた ex-situ 法 MgB₂バルクの断面研磨面の反射電子像を Fig. 1(b)に示す。従来法試料(Fig. 1(a))と比較して、プロセス中の酸素混入を少なくした本試料では MgO はほとんど見られなかった。従来法試料において、MgO は主に粒界に存在しており焼結を阻害している一方で、本試料では MgO の低減により結晶粒界の焼結性が改善し、結晶粒同士の接触面積が増大している。

試料の充填率 P、コネクティビティKの熱処理時間依存性 を Fig. 2 に示す。長時間の熱処理によって焼結が進行し、充 填率、コネクティビティともに改善した。また従来法試料と比較 して、Kは24時間熱処理試料において、8.3%から26%まで著 しく向上した。 また、原料粉末作製の in-situ 法過程において、B₄Cをドーパントとして炭素置換を行い、得られた炭素置換 MgB₂ 原料粉末を用いて ex-situ 法 MgB₂ バルクを作製し、コネクティビティなどの評価を行った。講演では ex-situ 法 MgB₂の自己焼結反応における炭素置換の効果についても考察する。

Fig. 1. Back scattered electron images of *ex-situ* MgB₂ bulks sintered at 900°C for 24 h; (a) conventional process, (b) low oxygen process.

Fig. 2. Packing factor P and connectivity K as a function of sintering time at 900°C for the sintered *ex-situ* MgB₂ bulks.

参考文献

- 1. A. Yamamoto et al.: Jpn. J. Appl. Phys. 25, 010105 (2012).
- 2. H. Tanaka et al.: Supercond. Sci. Technol. 25, 115022 (2012).

内部拡散法による MgB₂ 線材の臨界電流特性及び微細組織 The critical current properties and microstructure of high performance Internal Mg diffusion (IMD)-processed MgB₂ wires

<u>葉 術軍</u>, 松本 明善, 張 曇超, 戸叶 一正, 熊倉 浩明 (NIMS) <u>YE Shujun</u>, MATSUMOTO Akiyoshi, ZHANG Yunchao, TOGANO Kazumasa, KUMAKURA Hiroaki (NIMS) E-mail: YE.Shujun@nims.go.jp

1. はじめに

内部拡散法による MgB₂では、高い MgB₂充填密度が得ら れるため、高い臨界電流密度(critical current density, J_c)が 得られる [1,2,3]。内部拡散法ではB粉末の微細化や不純物 の添加などにより、臨界電流特性の向上が可能である。最近、 オハイオ州立大学のグループは、C coating したナノサイズの B粉末を使って、内部拡散法により細い(ϕ :0.55 mm)MgB₂単 芯線を作製し、高い臨界電流特性を得た[4]。我々は、同じB 粉末に Dimethylbenzene 添加し、Fe とTa の sheath 材を用 いて単芯線を作製して、臨界電流特性と微細組織を調べた。

2. 実験

①B 粉末の準備: C coating したナノサイズの B 粉末と Dimethylbenzene をよく混ぜて、乾燥させる。②線材の作製: Fe シースの単芯線(Fe-mono) と Ta がバリアー、Cu-Ni がシースの単芯線(Ta-mono)を作製した。Fe-mono におい ては、B 層厚により、Fe-mono-1 と、Fe-mono-2 を作製し た。線材の作製方法の詳細は[1-3]に記載。③組織観察・ 臨界電流特性評価:抵抗法による臨界電流の測定、SEM や TEM などによる組織の観察を行った。

3. 実験結果及び考察

Fig.1 に作製した線材(1)Ta-mono と(2) Fe-mono-1 の断 面写真を示す。シース材の内壁にMgB₂層が生成している。

Fig.1 transverse cross section of IMD-processed (1) Ta-mono, and (2) Fe-mono MgB₂ wires (ϕ : 0.6 mm) observed by SEM

Table.1 に作製した 3 種類の線材の 4.2 K、10 T での臨界 電流密度 (J_c) 及び線材全断面積当りの臨界電流密度 (J_c) を示す。比較のため、オハイオ州立大の線材の J_c と J_e を示し た。Ta-monoとFe-mono-1 の J_c はオハイオ州立大のデータよ りやや高い(4.2 K、10 K で 1.19 x 10⁵ A/cm²)が、MgB₂の占積 率がかなり低いため、 J_e は低い。Fe-mono-2 は、Fe-mono-1 より Mg 棒の直径を減少させており、生成した MgB₂の体積が かなり大きくなるが、 J_c は減少した。しかしながら、 J_e は 4.2 K、 10 K で~10⁵ A/cm²を達成した。Fig.2 には線材 Fe-mono-1 の J_c の温度、磁場依存性を示した。実用化が期待される 20K においては、4T で 1.86 x 10⁵A/cm²、5T で 7.55 x 10⁴ A/cm² の J_c が得られた。また J_e は 20K、5 T で 0.53x10⁴ A/cm²を得 た。今後シース材の厚さを減少させることにより、 J_e を向上させ ることができると考えている。

Fig.3 に Ta-mono の線材長手方向の断面の(1)SEM と(2) TEM 写真を示す。SEM 写真により、高い MgB₂層密度 (void と 未反応 B がない)が得られることが分かった。但しこの MgB₂ 層には 100 nm 以下の白い点 (MgO) が多く見られ、これらの MgO のサイズと数を制御すれば、 J_c が更に上がると考えられ る。TEM 像から MgB₂ 層、不純物共に、結晶粒サイズが殆ど 100nm 以下でかつ均一であることが分かった。この様に、 Dimethylbenzene で処理した C coating したナノサイズ B 粉末 を内部拡散法に用いることで、高密度で均一な微細結晶 粒径の MgB₂層が得られることが分かった。この様な微細 組織が、B サイトの C 置換と合わせて、本研究の高い J_c と J_eをもたらしたと考えられる。今後は更に様々な条件 を最適化することにより、内部拡散法による MgB₂線材の 性能向上を目指す。

Table.1 $J_{\rm c}$ and $J_{\rm e}$ comparison at 4.2 K and	10	Т	for					
IMD-processed MgB ₂ wires								

IMD-processed MgB ₂ wires	Ohio U. wire 1	Ohio U. wire 2	NIMS Ta-mono	NIMS Fe-mono-1	NIMS Fe-mono-2
Diameter (mm)	0.55 Inner: Nb, outer: monel		0.6		
Sheath material			Inner: Ta, outer: Cu-Ni	Fe	
MgB ₂ area fraction (%)	10.1	18.8	7.1	7	12.4
J _c (A/cm ²) @ 4.2 K & 10 T	1.07 x 10 ⁵	0.93 x 10 ⁵	1.19 x 10 ⁵	1.15 x 10 ⁵	0.77 x 10 ⁵
J _e (A/cm ²) @ 4.2 K & 10 T	0.97 x 10 ⁴	1.67 x 10 ⁴	0.84×10^{4}	0.81×10^{4}	0.96 x 10 ⁴

Fig.2 J_c -*B* curve at different temperatures of IMD-processed (Fe-mono-1) MgB₂ wires

Fig.3 (1) SEM, and (2) TEM images on longitudinal cross section of IMD-processed Ta-mono $\rm MgB_2$ wires

謝辞

本研究はJST 先端的低炭素化技術開発事業 (ALCA) の 助成を受けた。

参考文献

- 1. K. Togano, et al.: Supercond. Sci. Technol. 23 (2010) 085002
- H. Kumakura, et al.: IEEE Transactions on Applied Superconductivity 21 (2011) 2463
- 3. S. J. Ye, et al.: Supercond. Sci. Technol. 25 (2012) 125014
- 4. G. Li, et al.: Supercond. Sci. Technol. 25 (2012) 115023

内部 Mg 拡散法によって作製された MgB2線材の局所臨界電流分布の評価と 電子顕微鏡観察による特性制限因子の解明 Local Critical Current and Its Relationship with Microstructure in MgB2 Wires fabricated by Internal Mg Diffusion Process

<u>東川 甲平,</u> 木須 隆暢 (九大); 葉 術軍, 松本 明善, 熊倉 浩明 (NIMS)

HIGASHIKAWA Kohei, KISS Takanobu (Kyushu Univ.); YE Shujun, MATSUMOTO Akiyoshi, KUMAKURA Hiroaki (NIMS) E-mail: kohei@super.ees.kyushu-u.ac.jp

1. はじめに

超伝導線材の性能向上に向けては、局所超伝導特性を評価し、組織構造との対応を明らかにすることで、特性制限因子を解明することが有効となる。我々はこれまでに、磁気顕微法による超伝導線材の局所臨界電流密度分布の評価を行っており、MgB₂線材のフィラメントレベルの局所分布が得られることを明らかとした。その結果、内部 Mg 拡散法によって作製された MgB₂線材に関しては、現状では局所 I_c 値にばらつきが有り、その局所 I_c 値の最小値によって試料全体の I_c 値が制限されていることがわかった^{[1][2]}。そこで本研究では、本線材の局所特性低下部の要因を探るべく、磁気顕微法によって高精度に位置を特定した上で、該当部の電子顕微鏡観察を行った。

2. 磁気顕微鏡による局所臨界電流分布評価[1][2]

内部 Mg 拡散法によって作製された MgB₂線材に対して, 走査型ホール素子顕微鏡 (SHPM)によって得られた評価結果 をFig.1に示す。本線材は7芯のマルチフィラメント線材であり, 試料は研磨によって断面出しを行ったものである。本線材を 10 K まで冷却し,十分な外部磁界(3.5 T)を印加した後に除 去した際の残留磁界分布を測定した。また,残留磁界の強度 は局所 I_c値を反映するため,フィラメントが円筒形状であると仮 定し,局所 I_cを解析的に評価している。結果的に3本分のフィ ラメントに対して局所 I_c の長手方向分布が得られているが,ど のフィラメントにおいてもばらつきが見られ,最大値が最小値の 3 倍程度となっているフィラメントも存在している。すなわち,こ のばらつきや局所特性低下部の原因を明らかとし,線材作製 プロセスにフィードバックすることができれば,現状の 2-3 倍に 特性が向上することも非現実的では無いと期待される。

3. 局所臨界電流分布と組織構造との対応

そこで, SHPM によって高精度に位置を特定した上で, 該当 部の電子顕微鏡観察を行った。結果の一例を Fig. 2 に示す。 (a)に示す残留磁界分布を見ると, 点線で囲った領域において 局所的に特性が低下していることがわかる。同じ部位に対して 電子顕微鏡観察を行った結果を(b)に示しているが, 丁度そこ には白い析出物が存在していることがわかる。EDAX による元 素分析の結果, その析出物からは(c)Mg と(d)Si の信号が検出 されており, これは Mg₂Si と認められる。詳細は当日に発表す るが, その他の特性低下部でもことごとく Mg₂Si と思われる析 出物が検出されており, これが本線材における主な特性制限 因子であることが初めて明らかとなった。Si の由来は C の導入 を狙って添加された SiC であり, この添加形態の見直しやその 他の C 導入法の採用が今後のアプローチとして考えられる。

謝辞

本研究は、JST 先端的低炭素化技術開発(ALCA)「未来の水素利用社会を支える低コスト高性能 MgB₂線材の開発」の一環として行ったものである。

参考文献

[1] K. Higashikawa et al.: presented at ASC 2012, 2MB-06.

[2] T. Kiss et al.: Abstracts of CSJ Conference, vol. 86, p. 40.

Fig. 1. Longitudinal variation of local critical current in each filament of a multifilamentary MgB_2 wire estimated from remanent magnetic field distribution measured by scanning Hall-probe microscopy (SHPM) at 10 K. Trapped fields come from upper (U) and lower (L) filaments as well as from the central filament (M).

Fig. 2. Comparison between (a) remanent magnetic field distribution measured by SHPM and (b) SEM image. EDAX mappings are also shown for (c) Mg and (d) Si.

In-situ PIT 法 MgB₂線材における不純物添加による臨界電流密度の改善

Enhancement of the Critical Current Density of in-situ Powder-in-tube Processed MgB₂ Wires by Impurity Additions

張 雲超, 葉 術軍, 松本 明善, 熊倉 浩明 (NIMS)

ZHANG Yunchao, YE Shujun, MATSUMOTO Akiyoshi, KUMAKURA Hiroaki (NIMS)

E-mail: ZHANG.Yunchao@nims.go.jp

1. Introduction

Although MgB₂ has the highest critical temperature (T_c) of known metallic superconductors, 39K, the critical current density J_c values of *in situ* PIT processed MgB₂ wires are still below that of the present commercial superconducting wires (Nb-Ti and Nb₃Sn). Impurity doping is one of the main method to improve the J_c values of MgB₂ wires. In this study, we found two new effective hydrocarbon additives, xylene (C₈H₁₀) and triphenylamine (C₁₈H₁₅N). They help enhance the J_c values but with different mechanisms.

2. Experiment

The MgB₂ wires were all fabricated by in situ PIT method. Xylene (C8H10) and/or 10% SiC were mixed with amorphous B powder first. After sloshing for 1 hour, we put the liquid mixtures in quartz tube under flowing pure argon gas atmosphere for several hours. The added B powder was mixed with commercial Mg powder and grinded for 1 hour. For triphenylamine (C₁₈H₁₅N) addition, 10 mol%, 20 mol% or 30 mol% (mol% is the amount of carbon doping) was mixed with commercial Mg and amorphous B powders at the same time. Then the mixed powders were filled into pure iron tubes with a 6.0mm outer diameter and a 3.5mm inner diameter. The tubes were cold-rolled into wires whose diameter was 1.0mm using groove-rolling and drawing machines. Heat treatment was carried out at different temperatures for 1 hour under a flowing argon gas atmosphere. The transport critical current, I_c , was measured by a standard four-probe resistive method at 4.2K in magnetic fields varying from 12 T to 6 T.

3. Results and discussions

Figure 1 shows J_c versus H curves at 4.2K of C_8H_{10} , SiC and C8H10+SiC added wires heat-treated at 800°C for 1hr. The data of pure wire are also shown in the figure for comparison. The slope of J_c -H curves of C_8H_{10} added wire is larger than that of SiC added wire and nearly equal to that of pure one. X-ray diffraction analysis indicates that the amount of carbon substitution for the boron site of C8H10 added wire is much smaller than that of SiC doped wires, which introduce 3 percent of carbon substitution for boron and brings about the enhancement of the upper critical magnetic field H_{c2} and hence, increases J_c at high fields. This suggests that the dominant mechanism of J_c enhancement for C₈H₁₀-added wires is different from carbon substitution for boron. According to the SEM images, we observed fewer unreacted boron areas (Fig. 2) and smaller MgB₂ grain size in C₈H₁₀-added wires, meaning the fully-reacted MgB₂ core and more flux pinning center. The addition of both C8H10 and SiC powder to the starting powder is more effective in increasing $J_{\rm c}$ values as well as the upper critical magnetic field H_{c2} . This is because both mechanisms of $J_{\rm c}$ improvement –one comes from the addition of C₈H₁₀ and the other comes from the carbon substitution for boron by the SiC addition-work together. On the other hand, we found C₁₈H₁₅N (Triphenylamine) is another effective additive for enhancing the J_c values in MgB₂ wires by introducing carbon substitution for boron site.

Fig. 1 J_c -*H* characteristics of PIT-processed MgB₂ wires at 4.2K of pure, C₈H₁₀, SiC and C₈H₁₀+SiC addition heat treated at 800 °C for 1hr

Fig. 2 SEM images of MgB_2 cores (a)undoped (b) C_8H_{10} -added

References

- 1) H. Yamada, et al.: *Supercond. Sci. Technol.* **20** (2007) L30-L33.
- 2) S. Lee, et al.: Physica C 412(2004)31.

液体水素液面計用 AI 添加 MgB₂線材の開発 Development of AI doped MgB₂ wires for liquid hydrogen level sensors

<u>志村</u> 聡,山田 洋義,望月 一成 (東京ワイヤー製作所);腰塚 直己 (芝浦工大) Satoshi Shimura, Hiroyoshi Yamada, Kazunari Mochizuki (Tokyo Wire Works); Naoki Koshizuka (SIT) E-mail: satoshi_shimura@twire.co.jp

1. はじめに

水素燃料(水素エネルギー)は、酸化反応の際に CO₂を 排出しないため、従来の化石燃料に代わる新エネルギーの ひとつとして近い将来の利用が期待されている。

MgB₂は、39Kの臨界温度を有するため、大気圧下で約20Kの沸点を有する液体水素中で超伝導状態を発現できることから、これまでにもMgB₂線材を液体水素液面センサとして用い、貯蔵容器内における液体水素の残量を計測できる液体水素液面計が提案されている。

MgB₂を液体水素液面計として用いるには,浸漬部だけが 超伝導状態となることを利用し,浸漬部の上部(非浸漬部)が 超伝導状態でないことが必要だが,非浸漬部は液体水素に より不可避的に冷却されるために,浸漬部の近傍の温度が 39Kの臨界温度以下に低下すると,液面の計測精度が大幅 に低下する。このため,例えば,非浸漬部をヒーターにより, 加熱することによって,非浸漬部の温度を 39Kの臨界温度超 に維持する対策などが施されているが,測定システムの複雑 化,加熱による貯蔵された液体水素の気化による損失などの 課題がある。

我々は、液体水素温度 20K 近傍で、ゼロ抵抗臨界温度の 超伝導状態が発現する MgB₂ 超伝導線材を作製すれば、測 定精度の向上、システムの簡易化、および発熱ロスの低減に 効果をもたらすと考え、MgB₂にAIを添加すると臨界温度が低 下する性質を利用し、原料粉末にAIを添加した MgB₂極細単 芯線材を作製した。さらにこの素線を撚り合わせ、絶縁コーテ ィングを施した MgB₂撚り線材を作製した。

2. 実験方法

1)加工法

Al の配合比を変えた数種類の MgB₂原料粉末を準備し、ステンレス管に原料粉末を圧粉成形したペレットを封管・加工する in-situ パウダーインチューブ法で、伸線加工を行った。

- ① Al濃度が異なる母材のそれぞれについて伸線加工を行い、線径 φ 0.1mmの単芯線材を作製した。
- ② これら φ 0.1mm 単芯線材を 700~800℃で熱処理を行い, 超伝導化を行った。
- ③センサの信頼性を向上させるために、 MgB_2 線材を複数本 撚り合わせた多重撚り線について検討した。 ϕ 0.1mmの MgB_2 単芯線材を7本撚り合わせた撚り線材を作製後,全 長に絶縁(エナメル)コーティングを施し、特性評価した。 2)評価法

① 臨界温度評価として、各試料の短尺材を冷凍機にセットし、4 端子法による通電測定を行い、電圧の温度依存性を調べた。②AIドープ MgB₂線材の元素濃度分布を調べるために、EPMA により線材断面のライン分析を行った。

3. 結果とまとめ

Fig. 1は、Alの配合比を変えた数種類のMgB₂線材の電 圧-温度曲線を示す。Al 量の増大により臨界温度が20Kま で低下していることが分かる。また、常伝導から超伝導状態 に遷移する領域(遷移幅)は数Kと狭い。Fig. 2 は、多重(7 本)撚り線の電圧一温度曲線を示す。20K近傍にゼロ抵抗臨 界温度をもつことが分かる。Fig. 3は、多重撚り線の断面構 造写真を示す。 結論として、AIドープ量を変えることにより、ゼロ抵抗Tcが 20K近傍であり、狭い転移幅をもつ0.1mm ¢の液面センサ 用単線および多重撚り線を作製することができた。

Fig.2 V-T curves of enamel coated multi-stranded Al doped MgB, wires($\phi 0.1/7$)

Fig.3 Cross section view of enamel coated multi-stranded Al doped MgB₂ wire ($\phi 0.1/7$)